PC Model (version for simulating global wheat potential yield)

The PC model was initially developed using data from sites in China where wheat was grown under optimal irrigation and fertilization, and has been well tested in irrigated sites of China (Qiao et al., 2020). In the current version, we extended the original version of PC model including a scheme to account for water limitation, hence succeeded in simulating wheat potential yield for rainfed regions.

The version includes two scripts (PC_model.R and leaf_area_index.R). The fundamental functions to calculate light use efficiency (LUE), gross primary productivity (GPP), aboveground biomass (AB) and grain yield (yield) are shown in the script “PC_model.R”. The functions for calculating leaf area index based on mass-balance scheme are shown in the script “leaf_area_index.R”. More detailed information about PC model is introduced in Qiao et al. (AFM, 2020; ERL, 2021).

## this document includes the fundamental functions of PCmodel to calculate light use efficiency(LUE),
#  gross primary productivity (GPP), aboveground biomass (AB) and grain yield (yield).
##
## updated date: 28th August 2020
## by Shengchao Qiao (qsc17@mails.tsinghua.edu.cn) and Han WANG

##===================================
## define functions
##===================================

  # $1. calculate air pressure in Pa
  cal_patm <- function( elv ){
    #-----------------------------------------------------------------------
    # Input:    - elevation, m (elv)
    # Output:   - float, atmospheric pressure at elevation 'elv', Pa (patm)
    # Features: Returns the atmospheric pressure as a function of elevation
    #           and standard atmosphere (1013.25 hPa)
    # Depends:  - connect_sql
    #           - flux_to_grid
    #           - get_data_point
    #           - get_msvidx
    # Ref:      Allen et al. (1998)
    #-----------------------------------------------------------------------
    
    # Define constants:
    kPo <- 101325   # standard atmosphere, Pa (Allen, 1973)
    kTo <- 298.15   # base temperature, K (Prentice, unpublished)
    kL <- 0.0065    # temperature lapse rate, K/m (Allen, 1973)
    kG <- 9.80665   # gravitational acceleration, m/s^2 (Allen, 1973)
    kR <- 8.3143    # universal gas constant, J/mol/K (Allen, 1973)
    kMa <- 0.028963 # molecular weight of dry air, kg/mol (Tsilingiris, 2008)
    
    # Convert elevation to pressure, Pa:
    patm <- kPo*(1.0 - kL*elv/kTo)**(kG*kMa/(kR*kL))
    
    return (patm)
  }
  
  # $2. calculate K (MM coefficient of Rubisco) in Pa
  cal_k <- function(temp, patm) {
    #-----------------------------------------------------------------------
    # Input:    - float, air temperature, deg C (temp)
    #           - float, atmospheric pressure, Pa (patm)
    # Output:   float, Pa (mmk)
    # Features: Returns the temperature & pressure dependent Michaelis-Menten
    #           coefficient, K (Pa).
    # Ref:      Bernacchi et al. (2001), Improved temperature response 
    #           functions for models of Rubisco-limited photosynthesis, 
    #           Plant, Cell and Environment, 24, 253--259.
    #-----------------------------------------------------------------------
    
    # Define constants
    kc25 <- 39.97      # Pa, assuming 25 deg C & 98.716 kPa
    ko25 <- 2.748e4    # Pa, assuming 25 deg C & 98.716 kPa
    dhac <- 79430      # J/mol
    dhao <- 36380      # J/mol
    kR   <- 8.3145     # J/mol/K
    kco  <- 2.09476e5  # ppm, US Standard Atmosphere
    
    vc <- kc25*exp(dhac*(temp - 25.0)/(298.15*kR*(temp + 273.15)))
    vo <- ko25*exp(dhao*(temp - 25.0)/(298.15*kR*(temp + 273.15)))
    k  <- vc*(1 + kco*(1e-6)*patm/vo)
    
    return(k)
    
  }
  
  # $3. calculate Gstar (CO2 compensation point) in Pa
  cal_gstar_gepisat <- function( temp ) {
    #-----------------------------------------------------------------------
    # Input:    float, air temperature, degrees C (tc)
    # Output:   float, gamma-star, Pa (gs)
    # Features: Returns the temperature-dependent photorespiratory 
    #           compensation point, Gamma star (Pascals), based on constants 
    #           derived from Bernacchi et al. (2001) study.
    # Ref:      Bernacchi et al. (2001), Improved temperature response 
    #           functions for models of Rubisco-limited photosynthesis, 
    #           Plant, Cell and Environment, 24, 253--259.
    #-----------------------------------------------------------------------
    
    # Define constants
    gs25 <- 4.220    # Pa, assuming 25 deg C & 98.716 kPa)
    dha  <- 37830    # J/mol
    kR   <- 8.3145   # J/mol/K
    
    gs <- gs25 * exp( dha * ( temp - 25.0 ) / ( 298.15 * kR * ( temp + 273.15 ) ) )
    
    return( gs )
    
  }
  
  # $4. conver CO2 from ppm to Pa
  cal_co2_to_ca <- function( co2, patm ){
    #-----------------------------------------------------------------------
    # Input:    - float, annual atm. CO2, ppm (co2)
    #           - float, monthly atm. pressure, Pa (patm)
    # Output:   - ca in units of Pa
    # Features: Converts ca (ambient CO2) from ppm to Pa.
    #-----------------------------------------------------------------------
    
    ca   <- ( 1.e-6 ) * co2 * patm         # Pa, atms. CO2
    return( ca )
    
  }
  
  # $5. calculate the fraction of absorbed PAR
  cal_fapar <- function(LAI){
    #-----------------------------------------------------------------------
    ## Input:
    # LAI: leaf area index, dimensionless
    
    ## Output:
    # fAPAR: the fraction of the absorbed PAR to the incident PAR, dimensionless
    
    ## Features: calculate the fraction of absorbed PAR based on given LAI.
    #-----------------------------------------------------------------------
    
    fapar <- 1-exp(-0.5*LAI)
    
    return(fapar)
    
    }
  
  # $6. calculate vapour pressure deficit
  cal_vpd <- function(RH,Ta){
    #-----------------------------------------------------------------------
    ## Input:
    # RH: relative humidity, percentage
    # Ta: air temperature, degree C
    
    ## Output:
    # VPD: vapour pressure deficit, kPa
    
    ## Features: calculate the vapour pressure defict based on given air temperature and relative humidity.
    #-----------------------------------------------------------------------
    
    VPD  <- 0.611*exp(17.502*Ta/(Ta+240.97))*(1-RH/100)
    return(VPD)
    
  }
  
  # $7. calculate the light use efficiency based on given environmental factors
  cal_lue<-function(Ta,VPD,CO2,elv=NA,patm=NA){
  
    #-----------------------------------------------------------------------
    ## Input:
    # Ta: air temperature, degree C
    # PPFD: photosynthetic phtotn flux density, mol photon/m2
    # VPD: vapour pressure deficit, kPa
    # CO2: CO2 concentration, ppm
    # elv: elevation, m
    # patm: air pressure, kPa
    
    ## Output:
    # LUE: the light use efficiency
    
    ## Features: calculate the light use efficiency based on given environmental factors using Pmodel
    #-----------------------------------------------------------------------

      Tc.deg_C<-Ta 
      VPD.kPa  <-VPD
      CO2.ppm <- CO2 
      elv <- elv
      if (identical(NA, elv) && identical(NA, patm)) {
        rlang::abort("Aborted. Provide either elevation (arugment elv) or atmospheric pressure (argument patm).")
      }
      else if (!identical(NA, elv) && identical(NA, patm)) {
          rlang::warn("Atmospheric pressure (patm) not provided. Calculating it as a function of elevation (elv), assuming standard atmosphere (101325 Pa at sea level).")
        patm <- calc_patm(elv)
      } else {
        patm <- patm*1000 # convert kPa to Pa
        }
      
    # define constant
      beta <- 146# the ratio of cost factor b to a at reference temperature
      c <- 0.41# the cost factor of maintaining Jmax
      
    # instrinsic quantum yield, based on Cozettle et al.1998, unit: g C/ mol photon
    # Bernacchi et al. (2001)
      phi <- (0.352+0.021*Tc.deg_C-3.4*10^(-4)*(Tc.deg_C)^2)/8 # the tempereture-dependence of instrinsic quantum yield of C3
      maxQE <- phi*12 # convert unit from mol C/ mol photon to g C/ mol photon
      
      # light use efficiency
      K <- cal_k(Tc.deg_C,patm) # the effective Michaelis-Menten coefficient of Rubisco, Pa
      Gstar <- cal_gstar_gepisat(Tc.deg_C) # photorespiratory compensation point, Pa
      f1 <- exp(-0.0227*(Tc.deg_C-25)) # the viscosity of water relative to its value at 25藲C
      ca <- cal_co2_to_ca(CO2.ppm,patm) # ambient CO2 partical pressure, Pa
      
      m <- (ca - Gstar)/(ca + 2*Gstar + 3*Gstar*sqrt(1.6*VPD.kPa*1000*f1/(K + Gstar)/(beta)))
      M <- m*sqrt(1-(c/m)^(2/3))
      
      LUE <- M*maxQE # LUE controled by Vcmax, Jmax and instrinsic quantum yield
      
      return(LUE)

    }
  
  # $8. calculate gross primary productivity based on given environmental factors 
  cal_gpp<-function(fAPAR,Ta,PPFD,VPD,CO2,elv=NA,patm=NA){
    #-----------------------------------------------------------------------
    ## Input:
    # fAPAR: the fraction of absorbed PAR to the incident PAR, dimensionless
    # Ta: air temperature, degree C
    # PPFD: photosynthetic phtotn flux density, mol photon/m2
    # VPD: vapour pressure deficit, kPa
    # CO2: CO2 concentration, ppm
    # elv: elevation, m
    # patm: air pressure, kPa
    
    ## Output:
    # GPP: gross primary productivity, g C/m2
    
    ## Features: calculate gross primary productivity
    #-----------------------------------------------------------------------
    
    LUE <- cal_lue(Ta = Ta,VPD = VPD,CO2 = CO2,elv = elv,patm = patm)
    Iabs <- fAPAR*PPFD
    GPP <- LUE*Iabs
    
    return(GPP)
  }
  
  # $9. calculate aboveground biomass
  cal_ab<-function(GPP_ac,alpha){
    #-----------------------------------------------------------------------
    ## Input:
    # GPP_ac: accumulated gross primary productivity over growing season, g C/m2
    # alpha: moisture index, the ratio of AET to EET, dimensionless
    
    ## Output:
    # AB: aboveground biomass when harvest, g mass/ m2
    
    ## Features: calculate the aboveground biomass based on given alpha and GPP_ac
    #-----------------------------------------------------------------------
    
    # define constant
    f_tb <- 0.5 # the ration of total biomass to GPP
    f_C_to_mass <- 2.5 # the conversion coefficient from g C/m2 to g dry mass/m2
    f_alpha_h <- -0.11 # the sensitivity coefficient of root ratio (root biomass/ total biomass) to alpha
    
    # the root ratio when harvest
    f_root_h <- f_alpha_h*alpha+0.29
    # the total biomass, g dry mass/m2
    TB <- GPP_ac*f_tb*f_C_to_mass
    # aboveground biomass, g dry mass/m2
    AB<-TB*(1-f_root_h)
    
    return(AB)

  }
  
  # calculate yield based on given aboveground biomass and the amount of nitrogen
  cal_yield <- function(AB){
    #-----------------------------------------------------------------------
    ## Input:
    # AB: aboveground biomass when harvest, g dry mass/ m2
    
    ## Output:
    # yield: yield, g dry mass/m2
    
    ## Features: based on given aboveground biomass and the amount of nitrogen
    #-----------------------------------------------------------------------
    
    yield <- 1138.4*(1-exp(-0.00084*AB))-67.5
    
    return(yield)
  }

    


Close